Potential roles for p53 in nucleotide excision repair.

نویسندگان

  • B C McKay
  • M Ljungman
  • A J Rainbow
چکیده

Ultraviolet (UV) light-induced DNA damage is repaired by the nucleotide excision repair pathway, which can be subdivided into transcription-coupled repair (TCR) and global genome repair (GGR). Treatment of cells with a priming dose of UV light appears to stimulate both GGR and TCR, suggesting that these processes are inducible. GGR appears to be disrupted in p53-deficient fibroblasts, whereas the effect of p53 disruption on TCR remains somewhat controversial. Normal recovery of mRNA synthesis following UV irradiation is thought to depend on TCR. We have found that the recovery of mRNA synthesis following exposure to UV light is severely attenuated in p53-deficient human fibroblasts. Therefore, p53 disruption may lead to a defect in TCR or a post-repair process required for the recovery of mRNA synthesis. Several different functions of p53 have been proposed which could contribute to these cellular processes. We suggest that p53 could participate in GGR and the recovery of mRNA synthesis following UV exposure through the regulation of steady-state levels of one or more p53-regulated gene products important for these processes. Furthermore, we suggest that the role of p53 in the recovery of mRNA synthesis is important for resistance to UV-induced apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced sensitivity to anti-benzo(a)pyrene-diol-epoxide DNA damage correlates with decreased global genomic repair attributable to abrogated p53 function in human cells.

DNA damage from exposure to environmental chemical carcinogens and failure of repair systems to eliminate these lesions from the genome are considered as the crucial initial steps in the development of various human malignancies. Many cellular proteins are known to play vital roles to overcome the effects of DNA damage. Among such proteins, p53 is known to respond to DNA damage by accumulating ...

متن کامل

p53 and regulation of DNA damage recognition during nucleotide excision repair.

In response to a variety of types of DNA damage, the p53 tumor suppressor gene product is activated and regulates a number of downstream cellular processes such as cell cycle arrest, apoptosis and DNA repair. Recent discoveries concerning the regulation of DNA repair processes by p53, such as nucleotide excision repair (NER) and base excision repair (BER) have paved the way for studies to under...

متن کامل

Integration of DNA Damage and Repair with Murine Double-Minute 2 (Mdm2) in Tumorigenesis

The alteration of tumorigenic pathways leading to cancer is a degenerative disease process typically involving inactivation of tumor suppressor proteins and hyperactivation of oncogenes. One such oncogenic protein product is the murine double-minute 2, or Mdm2. While, Mdm2 has been primarily associated as the negative regulator of the p53 tumor suppressor protein there are many p53-independent...

متن کامل

Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts.

We have shown previously that Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in the removal of UV-induced cyclobutane pyrimidine dimers from genomic DNA, but still proficient in the transcription-coupled repair pathway (Ford, J. M., and Hanawalt, P. C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8876-8880). We have now utilized monoclonal antibodies specific for cycl...

متن کامل

The p53-regulated cyclin-dependent kinase inhibitor, p21 (cip1, waf1, sdi1), is not required for global genomic and transcription-coupled nucleotide excision repair of UV-induced DNA photoproducts.

The p53 tumor suppressor gene is a transcriptional activator involved in cell cycle regulation, apoptosis, and DNA repair. We have shown that p53 is required for efficient nucleotide excision repair of UV-induced DNA photoproducts from global genomic DNA but has no effect on transcription-coupled repair. In order to evaluate whether p53 influences repair indirectly through cell cycle arrest fol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 20 8  شماره 

صفحات  -

تاریخ انتشار 1999